Mark Scheme 4725 June 2005

1.	$\begin{aligned} & 6 \Sigma r^{2}+2 \Sigma r+\Sigma 1 \\ & 6 \Sigma r^{2}=n(n+1)(2 n+1) \\ & 2 \Sigma r=n(n+1) \\ & \Sigma 1=n \\ & n\left(2 n^{2}+4 n+3\right) \end{aligned}$	M1 A1 A1 A1 M1 A1	6	Consider the sum of three separate terms Correct formula stated Correct formula stated Correct term seen Correct algebraic processes including factorisation and simplification Obtain given answer correctly
2.	(i) $\mathrm{A}^{2}=\left(\begin{array}{cc}3 & 8 \\ 4 & 11\end{array}\right)$ $\begin{aligned} & \mathbf{4 A}=\left(\begin{array}{cc} 4 & 8 \\ 4 & 12 \end{array}\right) \\ & \mathbf{A}^{2}=4 \mathbf{A}-\mathbf{I} \end{aligned}$ (ii) $\mathbf{A}^{-1}=4 \mathbf{I}-\mathbf{A}$	$\quad \mathrm{M} 1$ A1 M1 A1 M1 A1	4 2 6	Attempt to find $\mathrm{A}^{2}, 2$ elements correct All elements correct Use correct matrix 4A Obtain given answer correctly Multiply answer to (i) by \mathbf{A}^{-1} or obtain \mathbf{A}^{-1} or factorise $\mathbf{A}^{2}-4 \mathbf{A}$ Obtain given answer correctly
3.	(i) $22-2 \mathrm{i}$ (ii) $\begin{aligned} & z^{*}=2-3 \mathrm{i} \\ & 5-14 \mathrm{i} \end{aligned}$ (iii) $\frac{4}{17}+\frac{1}{17}$ i	$\begin{aligned} & \text { B1B1 } \\ & \text { B1 } \\ & \text { B1B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	2 3 2 7	Correct real and imaginary parts Correct conjugate seen or implied Correct real and imaginary parts Attempt to use w^{*} Obtain correct answer in any form

\begin{tabular}{|c|c|c|c|c|}
\hline 4. \& \[
\begin{aligned}
\& x^{2}-y^{2}=21 \text { and } x y=-10 \\
\& \pm(5-2 \mathrm{i})
\end{aligned}
\] \& M1
A1A1
M1
M1
A1 \& 6 \& \begin{tabular}{l}
Attempt to equate real and imaginary parts of \((x+\mathrm{iy})^{2}\) and \(21-20 \mathrm{i}\) \\
Obtain each result \\
Eliminate to obtain a quadratic in \(x^{2}\) or \(y^{2}\) \\
Solve to obtain \(x=(\pm) 5\) or \(y=(\pm) 2\) \\
Obtain correct answers as complex numbers
\end{tabular} \\
\hline 5. \& \begin{tabular}{l}
(i) \(\begin{gathered}\frac{(r+1)^{2}-r(r+2)}{(r+2)(r+1)} \\ \frac{1}{(r+1)(r+2)}\end{gathered}\) \\
(ii) EITHER
\[
\begin{aligned}
\& \frac{2}{3}-\frac{1}{2}+\frac{3}{4}-\frac{2}{3} \cdots \frac{n+1}{n+2}-\frac{n}{n+1} \\
\& \frac{n+1}{n+2}-\frac{1}{2}
\end{aligned}
\] \\
OR \\
(iii) \(\frac{1}{2}\)
\end{tabular} \& \begin{tabular}{l}
M1
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M2 \\
A1A1 \\
B1 ft
\end{tabular} \& 2

4

1

7 \& | Show correct process for subtracting fractions |
| :--- |
| Obtain given answer correctly |
| Express terms as differences using (i) |
| At least first two and last term correct |
| Show or imply that pairs of terms cancel |
| Obtain correct answer in any form |
| State that $\sum_{r=1}^{n} u_{r}=f(n+1)-f(1)$ |
| Each term correct |
| Obtain value from their sum to n terms | \\

\hline 6. \& | (i) Circle |
| :--- |
| Centre (0, 2) |
| Radius 2 |
| Straight line |
| Through origin with positive slope |
| (ii) 0 or $0+0$ and $2+2 i$ | \& B \& 5

2 \& | Sketch(s) showing correct features, each mark independent |
| :--- |
| Obtain intersections as complex numbers | \\

\hline 8. \& | (a) (i) $\alpha+\beta=2 \quad \alpha \beta=4$ |
| :--- |
| (ii) EITHER $\alpha^{2}+\beta^{2}=-4$ |
| OR |
| (iii) $x^{2}+4 x+16=0$ | \& | B1B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 |
| B1 | \& 2 \& | Values stated |
| :--- |
| Use $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$ |
| Obtain given answer correctly |
| Find numeric values of roots, square and add Obtain given answer correctly |
| State or use $\alpha^{2} \beta^{2}=16$ | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
(b) (i) \(p=2\) \\
(ii) \(a=44\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1ft
\end{tabular} \& 2

2

11 \& | Or use substitution $u=x^{2}$ |
| :--- |
| Write down a quadratic equation of correct form or rearrange and square $\text { Obtain } x^{2}+4 x+16=0$ |
| Use sum or product of roots to obtain $6 p=12$ |
| Or $6 p^{3}=48$ |
| Obtain $p=2$ |
| Attempt to find $\Sigma \alpha \beta$ numerically or in terms of p or substitute their 2,4 or 6 in equation Obtain 11p ${ }^{2}$ | \\

\hline 9. \& | (i) $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ |
| :--- |
| (ii) Shear, e.g. $(0,1)$ transforms to $(3,1)$ |
| (iii) $\mathbf{M}=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)$ |
| (iv) $\begin{aligned} \mathbf{M}^{k}= & \left(\begin{array}{cc} 2^{k} 3\left(2^{k}-1\right) \\ 0 & 1 \end{array}\right) . \\ & \left(\begin{array}{cc} 2^{k+1} 3\left(2^{k+1}-1\right) \\ 0 & 1 \end{array}\right) . \end{aligned}$ | \& | B1B1 |
| :--- |
| B1B1 |
| M1 |
| A1 |
| B1 |
| M1 |
| M1 |
| A1 |
| A1 |
| A1 | \& 2

6

12 \& | Each column correct |
| :--- |
| One example or sensible explanation |
| Attempt to find DC (not CD) |
| Obtain given answer |
| Explicit check for $n=1$ or $n=2$ |
| Induction hypothesis that result is true for $\mathbf{M}^{\mathbf{k}}$ |
| Attempt to multiply $\mathbf{M M}^{k}$ or vice versa |
| Element $3\left(2^{k+1}-1\right)$ derived correctly |
| All other elements correct |
| Explicit statement of induction conclusion | \\

\hline
\end{tabular}

