Mark Scheme 4725 June 2005

www.mymathscioud.com

4725		Mark Scho	Mark Scheme June 2 M1 Consider the sum of three separate terms		
1.	$6\Sigma r^2 + 2\Sigma r + \Sigma 1$	M1		Consider the sum of three separate terms	-O.COM
	$6\Sigma r^2 = n(n+1)(2n+1)$	A1		Correct formula stated	
	$2\Sigma r = n(n+1)$	A1		Correct formula stated	
	$\Sigma 1 = n$	A1		Correct term seen	
	$n(2n^2+4n+3)$	M1	6	Correct algebraic processes including factorisation and simplification	
2.		A1	6	Obtain given answer correctly	-
	(i) $A^2 = \begin{pmatrix} 3 & 8 \\ 4 & 11 \end{pmatrix}$	M1		Attempt to find A^2 , 2 elements correct	
	(411)	A1		All elements correct	
	$\mathbf{4A} = \begin{pmatrix} 4 & 8 \\ 4 & 12 \end{pmatrix}$	M1		Use correct matrix 4A	
	$\mathbf{A}^2 = 4\mathbf{A} - \mathbf{I}$	A1	4	Obtain given answer correctly	
	(ii)	M1		Multiply answer to (i) by A^{-1} or obtain A^{-1} or factorise $A^2 - 4A$	
	$\mathbf{A}^{-1} = 4\mathbf{I} - \mathbf{A}$	A1	2	factorise $A^2 - 4A$ Obtain given answer correctly	
			6		
3.	(i) 22 – 2i	B1B1	2	Correct real and imaginary parts	-
	(ii) $z^* = 2 - 3i$ 5 - 14i	B1 B1B1	3	Correct conjugate seen or implied Correct real and imaginary parts	
	(iii) $\frac{4}{17} + \frac{1}{17}i$	M1 A1	2	Attempt to use <i>w</i> * Obtain correct answer in any form	
			7		

Mark Scheme

47	725	Mark Scher	ne	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $21 - 20i$ Obtain each result
		N 44	1	Attemat to constant and incention of the
4.	$x^2 - y^2 = 21$ and $xy = -10$	M1 A1A1 M1 M1		Attempt to equate real and imaginary parts of $(x + iy)^2$ and 21 –20i Obtain each result Eliminate to obtain a quadratic in x^2 or y^2 Solve to obtain $x = (\pm) 5$ or $y = (\pm) 2$
	±(5-2i)	A1	6	Obtain correct answers as complex numbers
			6	
5.	(i) $\frac{(r+1)^2 - r(r+2)}{(r+2)(r+1)}$ $\frac{1}{(r+1)(r+2)}$	M1 A1	2	Show correct process for subtracting fractions Obtain given answer correctly
	(ii) EITHER $\frac{2}{3} - \frac{1}{2} + \frac{3}{4} - \frac{2}{3} \dots \frac{n+1}{n+2} - \frac{n}{n+1}$	M1		Express terms as differences using (i)
	$3 \ 2 \ 4 \ 3 \ n+2 \ n+1$	A1		At least first two and last term correct
	. 1 1	M1		Show or imply that pairs of terms cancel
	$\frac{n+1}{n+2} - \frac{1}{2}$	A1	4	Obtain correct answer in any form
	OR	M2		State that $\sum_{r=1}^{n} u_r = f(n+1) - f(1)$
		A1A1		Each term correct
	(iii) $\frac{1}{2}$	B1 ft	1	Obtain value from their sum to <i>n</i> terms
			7	
6.	 (i) Circle Centre (0, 2) Radius 2 Straight line Through origin with positive slope 	B1 B1 B1 B1 B1 B1	5	Sketch(s) showing correct features, each mark independent
	(ii) 0 or 0 +0i and 2 + 2i	B1ftB1f t	2	Obtain intersections as complex numbers
8.	(2) (i) $\alpha + 0 = 2$ $\alpha = 0 = 4$	B1B1	7	Values stated
0.	(a) (i) $\alpha + \beta = 2$ $\alpha\beta = 4$	וטוט	2	
	(ii) EITHER $\alpha^2 + \beta^2 = -4$	M1 A1	2	Use $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ Obtain given answer correctly
	OR (iii)	M1 A1		Find numeric values of roots, square and add Obtain given answer correctly
	$x^2 + 4x + 16 = 0$	B1		State or use $\alpha^2 \beta^2 = 16$

47	'25 Ma	rk Schen	ne	$\frac{w_{M_{M_{i}}}}{June 2}$	
	(b) (i) <i>p</i> = 2 (ii) <i>a</i> = 44	M1 A1 M1 A1 M1 A1ft	3 2 2 11	Or use substitution $u = x^2$ Write down a quadratic equation of correct form or rearrange and square Obtain $x^2 + 4x + 16 = 0$ Use sum or product of roots to obtain $6p = 12$ Or $6p^3 = 48$ Obtain $p = 2$ Attempt to find $\sum \alpha \beta$ numerically or in terms of p or substitute their 2, 4 or 6 in equation Obtain $11p^2$	N.
9.	(i) $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$	B1B1	2	Each column correct	
	(ii) Shear, e.g. (0,1) transforms to (3,1)	B1B1	2	One example or sensible explanation	
	(iii) $\mathbf{M} = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$	M1 A1	2	Attempt to find DC (not CD) Obtain given answer	
	$\mathbf{M}^{k} = \begin{pmatrix} 2^{k} 3(2^{k} - 1) \\ 0 & 1 \end{pmatrix} .$	B1 M1		Explicit check for $n = 1$ or $n = 2$ Induction hypothesis that result is true for \mathbf{M}^{k}	
	$\left(egin{array}{ccc} 0 & 1 \ \end{array} ight)^{k+1} \left(2^{k+1} 3(2^{k+1}-1) \ 0 & 1 \end{array} ight) \; .$	M1 A1		Attempt to multiply MM ^k or vice versa Element $3(2^{k+1} - 1)$ derived correctly	
	$\begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.	A1 A1	6 12	All other elements correct Explicit statement of induction conclusion	